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Quasiclassical Wavefunctions

R. E. Prange1

I. INTRODUCTION

The quasiclassical approximation [QCA] in quantum or wave systems
exploits the smallness of the parameter kja, where X is the wavelength and
a is a typical classical length. The classical limit of vanishing wavelength is
very singular, however. For example, the classical limit does not commute
with other interesting limits, in particular the long time limit, used to define
chaos or sharp energy levels. As a result, the formal series for quantum
amplitudes are often not absolutely convergent and thus can take on any
value desired, depending on the order of summation. This difficulty is par-
ticularly acute when the classical limit is chaotic. These difficulties are
present in the well known Gutzwiller trace formula,(1) which expresses the
density of states as a sum over WKB amplitudes, similar to Eq. (2) below.
The difficulties have been overcome in cases where the prefactors are
simple enough, especially for the case of strong hyperbolic chaos, where all
orbits are hyperbolically unstable.(2–6)

For the spectrum, the orbits of interest are the periodic orbits. Of
course, only the canonically invariant properties of the orbits, i.e., the
actions and the stabilities, can affect the spectrum. The basic technique was
a "resummation" of Gutzwiller's series into a dynamical or Gutzwiller-
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A convergent quasiclassical formula for the wavefunctions of a closed quantum
or wave system is obtained. This is expressed entirely in terms of classical orbits.
The result is at the same level as earlier results expressing the spectrum as a
finite resurgent sum over composite periodic orbits.
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Voros zeta function, or "spectral determinant," which vanishes on the spec-
trum. The zeta function was expressed as an infinite product, reminiscent
of Riemann's zeta function. This product also does not converge, but a
variety of arguments have been put forward giving prescriptions for a
correct expansion, corresponding to the Dirichlet series in the theory of the
Riemann zeta function. Thus, the spectral problem for hard chaos, in the
QCA context, has been solved, or at any rate the most glaring mathemati-
cal difficulties are avoided. A rigorous account is not at hand, however.

Recently, we put forward a general technique, based on Fredholm
integral equations, applicable to this problem, but also to problems of
mixed chaos and integrable systems as well as to scattering. (7–9) The techni-
que can give convergent expressions for matrix elements and wavefunc-
tions, as well. In this article we produce a convergent formula for the
wavefunctions of closed systems which is expressed entirely in terms of
classical orbits.

II. THE ENERGY GREEN'S FUNCTION

We study the Green's function at constant energy, from which we can
extract the wavefunctions. This is expressed in terms of wavefunctions and
energies, [for a closed system], by

for the same Green's function in the QCA is based on classical orbits, as
desired, but is mathematically and even physically somewhat dubious. It is
the Feynman path integral expression for the same object, evaluated in the
stationary phase approximation. If Eq. (2) is correct, then, for almost all
points r1, r2, the series must diverge as E-+Ea, i.e., the long orbits must
dominate the sum, and these must contrive to diverge at the same energies
independent of end points. While it is reasonable that precise energy levels
are related to long time behavior, it is known empirically that most of
the contribution comes from short orbits. In any case, the number of very
long orbits (taking time Tp = dSp/dE) are exponentially numerous, in the
chaotic case, going as #{Tp)xe\p(yTp)/Tp, so there are an enormous

The Van Vleck expression(10)
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number of orbits whose actions Sp lie between a given S and S + h. There
is no particular point in distinguishing between these orbits. We shall see
that this can be exploited to express long orbits as compositions of shorter
ones, allowing the theory to be expressed entirely in terms of a finite
number of classical orbits.

Our theory is based on the following exact integral expression for the
Green's function:

The quantity fi obeys a Fredholm integral equation(11)

The integral is over a d— 1 dimensional subspace, a surface of section, SS.
A typical example is shown in Fig. la. The quantities n, V± depend
parametrically on r, E, the kernel K depends on E, and Go is the free space
Green's function. The bookkeeping parameter X eventually is set equal to
unity. Figure lu, d suggests one important technique for obtaining such
exact kernels. Integral equations of this type have been derived in the
present context in refs. 4, 6, and 12.

Fig. 1. (a) Schematic of a surface of section, S-S, in an elliptic potential well, (u), (d)
Auxiliary scattering potentials. The Green's functions and/or scattering operators of these
auxiliary potentials can be combined to give an exact kernel for the surface of section shown
in (a).



There are several virtues to this formulation. First, equations of this
form are mathematically and numerically well studied, and most difficulties
have been overcome. Second, the integrals are over a one-dimensional sub-
space, [or more generally for a d-dimensional problem, a d— 1 dimensional
subspace]. This is effectively a wave generalization of the classical Poincare
surface of section. It is also a generalization of the boundary integral
method which is in widespread use for billiard problems.(13) Numerical dis-
cretization of these equations needs a one dimensional rather than a two
dimensional grid or element representation. Third, there are many, indeed
infinitely many, exact equations of this form which solve the same problem.
There are many choices of surface of section, and many representations of
the kernel. True, most of these give rise to intolerably complex and sen-
sitive kernels and auxiliary functions, but it does allow much scope for
ingenuity and it gives a way to exploit special features of the problem at
hand. [For brevity, in the following we sometimes use the term "kernels"
to refer not only to K but to Go and the V's as well.] Also, to find the
kernels it is usually necessary to solve an integral equation as difficult as
the original problem. However, the QCA approximation to the kernels can
be quite simple and accurate, since the kernels represent the contribution
of short orbits, e.g., orbits having just one encounter with the surface of
section. We shall assume that there is just one orbit contributing to the
kernel, for brevity of notation. We shall also keep just the leading order
approximation, although this is also a good method to study corrections to
the leading order.

A formal expression for the solution of (4) is
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so that the crucial construct is the inversion of the operator 1 — AK. Th
simplest way to invert this is by the Neumann series, valid if ||AK|| < 1, that is,

The Gutzwiller trace formula, and the more general Van Vleck Green's
function formula are approximations at the level of the Neumann series.
The Van Vleck formula (2) is recovered by a) making the QCA approxi-
mation for the kernels, which are then expressed in the prefactor x
exp{iS/h) form, [or as a sum over such terms]. This is followed by doing
all the integrals in Eqs. (3), (5), and (6) by the method of stationary phase.
We shall assume that it has been possible to choose the surface of section
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and kernel sufficiently astutely that only real orbits are needed. Then the
Van Vleck series is organized into groups of orbits according to how many
time the orbit crosses the surface of section, incidentally providing a
definite mathematical prescription for the series, which so organized either
diverges or converges. In fact, the Neumann series often does not converge.
Indeed, when E = Ea, K has a unit eigenvalue, and the series diverges at the
physical value of X = 1.

The exact solution obtained by Fredholm almost a hundred years ago
is physically quite formal, although it is mathematically explicit and well
behaved, being expressed in terms of a ratio of absolutely convergent power
series in X whose coefficients are expressed as integrals of certain deter-
minants. Thus,

A better way of computing these coefficients is through the recurrence
relations

and

where

Equation (8) is effectively the relation 1n det(l - XK) = Tr ln( 1 - XK).
Thus

In general, Go accounts for orbits which do not cross the surface of section,
V+ accounts for orbits leaving r' and arriving for the first time at the SS
at point q' and F_ takes care of the orbits which leave the SS at point q,
arriving at r without crossing the SS in between. As a rule, the shorter the
SS, the more complicated these objects become.



III. QUASICLASSICAL APPROXIMATION

To this point, the formulation is exact. We now turn to the quasiclassi-
cal approximation. The first step is to replace the exact kernel K by its
quasiclassical or asymptotic approximation, which we call T. The general
form of T is

The sum is over classical orbits b of energy E, action Sb, going from one
point q' on the surface of section to another point q, without crossing the
surface of section in between. [ We incorporate the Maslov phase into the
definition of the action, Sb.] We will also replace Go, V± by their quasi-
classical approximations, which have a similar form, although we won't
give them new names.

The connection with classical mechanics comes because Sb(q, q') is the
generator of the classical surface of section map (q, p) = ,T(q'p') carrying
an initial point q', with momentum p' parallel to the section, to a final
point q, p. The map F is found by solving the equations p = dSb(q, q')/dq,
p'=-dSb(q,q')/dq'.

The Dn's are represented in terms of the traces
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Carrying out the integrals in stationary phase approximation gives expres-
sions for zn which are expressed as a sum over periodic orbits of "SS
length" n. A particular orbit can be primitive or it can be an r-fold repeti-
tion of some shorter orbit of SS length s with n = rs. If the orbit is isolated,
all the integrals will have rapidly varying phases. For such orbits

Here Ss is the action and Ms is the monodromy or stability matrix for th
primitive orbit. For an unstable orbit Ms has eigenvalues As, AJX with
\AS\ > 1. Most work on periodic orbit theory confines itself to this case of
hard chaos. If all traces can be so expressed, the Gutzwiller series is given
by the expansion of the logarithmic derivative d 1n D(E)/dE, where, in the
spirit of stationary phase, the derivative is regarded as acting only on
SP(E).



Thus, in the nth coefficient Dn are grouped all combinations of peri-
odic orbits whose SS length totals to n. Such combinations are called com-
posite orbits, or less descriptively, pseudo orbits. A periodic orbit which
does not repeat itself, is called a prime or primitive periodic orbit, and
composite orbits are composed of prime orbits. This corresponds to the
notion of prime and composite numbers. In fact, in the theory of the
Riemann zeta function, S is ln n = ln n Pm' = Z m

P
 m />> ar>d the Dirichlet

series for Riemann zeta function corresponds to the orbit approximation of
a Fredholm determinant.

Using the QCA approximations for V± we may express Eq. (11) in
terms of a new type of composite orbit. The denominator was just discussed.
The new type of orbit is in the numerator. It consists of a single propagating
orbit, composed with one or more periodic orbits. The total SS length of the
composite orbit is just the total number of SS crossings of all orbits in the
composite. The composite orbits of the same length are grouped together in
the terms of the final formulas, Eqs. (40) and (41), below.

IV. FINITENESS OF THE QCA

The T operator given above in Eq. (12) has an interpretation in terms
of classical orbits. Within the framework of the QCA it has another
property of importance: Namely, it is of finite rank.

The representation of the kernel T is arbitrary so we may write
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where the î 's are a complete orthonormal set of states on the surface of
section. The kernel is of finite rank N, if there exists a representation of the
form Eq. (15) such that only N terms in each sum are nonvanishing, and
N is the smallest number for which this is true. Kernels of finite rank are
equivalent to finite matrices, although in arbitrary representations they
have an arbitrarily large number of nonvanishing matrix elements.

If the surface of section is a simple closed curve, then a natural basis
set is the Fourier basis, <t>n{q) = L~l/2e2ninq/L, where L is the length of t
SS. Now,

an integral that can be estimated in S<£. The stationary points are found by
solution of the equations Innh/L = BS(q, q' )/dq = p, 2nhm/L = —dS(q, q' )/dq'
= p'. For given energy, the classical momenta /?, p' typically have a maximum



momentum magnitude \po\. This implies that stationary points exist for
\n\ < \p01 L/h = LjX, where A is the magnitude of the shortest wavelength at
energy E. If there is no stationary point, the integral is quasiclassically
small. Therefore, the matrix elements Tmn in this representation are only
large in an N x N submatrix where N = 2L/X. Similar results are expected
to hold with more general surfaces of section.

The consequences are straightforward. First, the coefficients Dn vanish
quasiclassically for n> N, and the coefficients Nn vanish for n > N. In other
words, the composite periodic orbits of SS length n, added up according to
the rules for calculating Dn, systematically cancel leaving a quasiclassically
small residue, for n > N. The typical composite orbit of SS length N has a
real composite period of order the Heisenberg time. This was shown
explicitly for the case of hard chaos by Bogomolny.(4) It agrees with the
result of Berry and Keating(5) who find that contributions of composite
orbits of period greater than the Heisenberg time are quasiclassically small.

Perhaps more surprisingly, we may express the Green's function
G(r, r', E) by means of Eq. (11) quasiclassically in terms of orbits of energy
E from point r' to point r. Composite propagating orbits combining such
nonperiodic orbits with periodic orbits may be accordingly defined and
grouped according to their SS-length. Such combinations of composite
propagating orbits vanish quasiclassically for n ^ N.

The physics of this was well known for some time, but no one had found
a way to exploit it before the introduction of the Fredholm method.(7)

Namely, long propagating orbits, i.e., those crossing the SS many times,
must necessarily be close to periodic orbits over much of their trajectory.
Therefore, long propagating orbits can be well approximated by shorter
propagating orbits with the same endpoints which are composed with peri-
odic orbits. Thus to leading quasiclassical order, all Green's functions, and
scattering amplitudes, can be expressed as a sum over a finite number of
orbits.

V, UNITARITY OF THE T OPERATOR

In the preceding section we found that, up to quasiclassical errors, Tmn

is a finite matrix. We next argue in the case of a closed system, Tmn,
[ restricted to the subspace where T does not vanish ] is unitary, again up
to quasiclassical errors. Indeed, using Eq. (12) we find that
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where the bar indicates complex conjugation. The phase will be stationary
only for dS{q, qi)/dq=dS(q, qt)fiq, i.e., only if the classical orbits from qi

to q have the same final momentum. Since the orbits are unique, the phase
is stationary only for qx = q2. Expanding, S{q,q2) = S(q,ql) + {q2-ql)
dS{q, q{]ldqx, we find

VI. RESURGENCE IN THE SPECTRAL DETERMINANT

The consequences of this unitarity are fairly straightforward. Using
D(X) = det(l — XT), where T is an Nx N unitary matrix, and X is real, we
have
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where p(q) = dS(q, qi)/dqx. The integral is not strictly a d-function because
the effective limits are +\po\, but it can be treated as one within the QCA.

Thus, making only quasiclassical errors, we can treat Bogomolny's T
operator as a unitary operator of finite rank N. The same result is obtained
by Doron and Smilansky who formulate the problem in terms of scattering
matrices, which also are of finite rank. This unitarity corresponds to the
functional relation for Z(E) used by Berry and Keating.

Comparing coefficients in the expansion of the two sides of this equation
in powers of X gives

The phase is p = arg det(-T) = 27N(£) where Jf(E) is the smoothed
level counting function. Using Eq. (20) we see that we may express

[ We here and in the future always take N = 2N^ + 1 to be odd. The for-
mulas for even N are similar.] It is convenient to define



Thus, only composite orbits of SS length shorter than N/2 are needed, since
the contribution of orbits between N/2 and N are expressed in terms of
shorter orbits. This is the phenomenon termed resurgence by Berry and
Keating,(5) namely, the longer orbits resurge to give the contribution of the
short orbits, with an additional, very important, phase. This expression for
the spectral determinant A(E), which vanishes on the QCA spectrum, and
only on the spectrum, is a generalization of the major result of refs. 5, 4,
and 6. It is more general in that it does not rely on explicit expressions for
the prefactors in the Gutzwiller trace formula, which are typically written
down for hard chaos only. Numerical tests have very successfully confirmed
the efficacy of Eq. (23).(14)

Note that, even a very simple approximation, such as Z ^ l o ^ n ~ l
leads to results which are not grossly in error, namely to energy levels
spaced with the local mean level spacing. Roughly speaking, one can say
that composite classical orbits with n near N, account for the mean level
spacing. Short orbits, n « N , give correlations between levels which are
many mean levels spacings apart, while orbits with n K, N/2 contribute ran-
dom matrix like short range fluctuations and level repulsions.

Remark also that this formulation suggests it may be possible to find
energy levels with an error smaller than the mean spacing, [of order hd in
d dimensions, even though errors of order h have been committed in
obtaining the £>n's. This is because the zeroes of Re 3{E) come from the
zeroes of cosinJ^iE) — <x.(E)) where a is the phase of Jln'=o Dn, rather th
from the vanishing of |Z^L0Z>J. (15)
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so that

VII. RESURGENCE IN THE NUMERATOR FUNCTION

In a similar way, the numerator Nm displays a resurgence.(7) Taking
the Hermitean conjugate of [1 — AT] - 1 = N/D we find

Equating powers of X, as before, we find that



This is the resurgence relation for the numerator operator. Using it we find

VIII. RESURGENCE AND THE WAVE FUNCTIONS

We now apply Eqs. (20) and (25) to a calculation of the energy
Green's function. We use Eq. (11) in the QCA. For this, we use expressions
for V± in QCA. Thus, for example,

Here S is the action of an orbit from the point q on the surface of section
to the interior point r, v is the magnitude of the velocity at r. The orbit is
assumed to reach r without crossing the SS after it leaves q. The derivative
is with respect to the coordinate perpendicular to the orbit at r.

We now consider T~ 'F + evaluated in the stationary phase approxi-
mation. For this we need to find the Sp point q such that dS(q, r')/dq =
dS(q, q')/dq. [See Fig. 2.] This equation implies that q', q, and r' all lie on
the same orbit, i.e., the orbit from q' to q passes through r'. Therefore, we
find that S{q, r') — S(q, q') = -5(r ' , q'). The prefactors may be worked ou
and the result is

Quasiclassical Wavefunctions 975

It will later be convenient to have two powers of T* in the resurgent
terms rather than one. This is achieved by using the relation

Then

and similarly
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Fig. 2. Schematic of the stationary point q which is on the continuation of the orbit from
q' to r'.

Using Eq. (28) in Eq. (11), we find that

Prange

The first term contains those orbits which do not cross the surface of sec-
tion in the positive direction. The second gL is the contribution from longer
orbits, going from r' to r while crossing the SS some positive number of
times. The third term comes originally from the longest contributing orbits,
but as we shall see, its contribution is very much like that of the short
orbits. This term is

If r is not too close to r', this integral may be performed using stationary
phase. There are two stationary points, as shown in Fig. 3, giving contribu-
tions

Point qx is the first point on the SS encountered by the continuation of the
direct orbit from r' through r. In other words, it is on the continuation of
the orbit contributing to Go. The action at qx is S(ql,r') — S{ql,r) =
S{r, r'), exactly the action that appears in Go. The prefactors work out to
give
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Fig. 3. Illustration of the stationary phase contributions to the integral J dq V\(r, q) V+(q, r')
for the case of a charged particle in a circular billiard in a perpendicular magnetic field. The
two stationary points are labelled <?, and q2. This case does not have time reversal invariances.

The other stationary point q2 is on the SS where the orbit starting at r, and
passing through r' first encounters the SS. This leads to an action exponen-
tial e~'s<r'r)/A. Working out the prefactors, we find

The expressions for gRi are in terms of the quasiclassical approximation to
Go. We thus combine Go and gR to give

We may similarly express

where



There is a similar expression if N is even. Namely, if TV = 2N1 the preceding
expression applies except that the terms with n = TV, are multiplied by a
factor 1/2.

Equation (40) is the generalization to the Green's function of the
theory for the spectral determinant which is embodied in Eq. (23). It is a
convergent, quasiclassical expression for the Green's function which can be
expressed entirely in terms of classical orbits, when the g,'s are evaluated
by stationary phase.

The residue of G at the zeroes of A is
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Putting this all together, we have the desired formula

where g'n is the same as gn except that the A in the denominator is replaced
by A'(Ea) = dA/dE. This assumes no degeneracy of the energy levels. At
present, we don't know exactly how this expression relates to the procedure
used by Tomsovic and Heller(16) to obtain semiclassical expressions for
wave functions.

It remains to show that the right hand side of Eq. (41) factors into
QCA wavefunctions. The integral of Eq. (41) over r, with r = r', is unity in
QCA. Further, one can show that

for our expression Eq. (40), in QCA, as well as exactly for Eq. (1). These
last two properties suffice to show that expression (41) actually factors, up
to quasiclassically small corrections. To see this, notice that the RHS may
be regarded as a self-adjoint operator. Equation (42) shows that this
operator is equal to its square, so its eigenvalues are zero or unity The first
property shows there is just one unit eigenvalue, which is to say, the RHS
of Eq. (41) factors. Thus, Eq. (41) is the QCA expression for the wave func-
tions.

IX. SUMMARY

Equation (23) is the best expression known giving the spectrum in the
extreme version of the quasiclassical approximation expressed entirely in



terms of classical orbits. It was obtained, under special assumptions on the
underlying chaos, in the famous work we cited in the introduction. By use
of the Fredholm theory, that work has been extended to the energy Green's
function, which in principle contains everything there is to know. Our
expression for the energy Green's function in QCA which corresponds to
Eq. (23) is Eq. (40). We also obtain an expression, Eq. (41) for the wave
functions in terms of classical orbits.

We have not had to make any assumptions on the nature of the chaos
or lack thereof in the underlying classical system to obtain these results.
Rather, we have had to assume that our surface of section is chosen
sufficiently well that the quasiclassical expression T(q,q',E) is a good
approximation to the exact kernel K(q, q\ E). This requires that the QCA
be good for classically rather short orbits, [but still long compared with the
wavelength], something that is usually relatively easy to accomplish. At
this level, there is no difficulty in dealing with mixed chaos. Effects such as
diffraction can be accounted for by keeping higher order contributions to T,
that is, by including corrections to Eq. (12).

The crucial feature of the Fredholm theory that we have used is the
expression of a divergent series by a ratio of absolutely convergent ones. In
this way, we have expressed the numerator as a sum over composite orbits
from r' to r, in which ordinary orbits from r' to r are composed with peri-
odic orbits. Cancellations result, because a long ordinary orbit passes close
to periodic orbits, and so can be approximately decomposed into a shorter
ordinary orbit plus periodic ones. These compositions are organized by the
number of surface of section crossings, and the determinantal structure
implies that there are strong cancellations between different contributions,
so much so that only orbits of less than half the Heisenberg time need be
considered.
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